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Abstract. We consider integrals over symmetry-adapted
basis functions that involve the coordinates of more than
one electron. We focus on basis functions that can be
written as products of one-electron functions and (say) a
two-electron function. We show first that the two-
electron parts of the basis functions can be absorbed into
the operator, resulting in an integral over only one-
electron basis functions, but a more complicated many-
electron operator. We then prove a general formula for
expressing such integrals in terms of symmetry-distinct
integrals only.

Introduction

One of the strategies that can be used to reduce the
computational effort in quantum-chemical calculations
is to exploit molecular symmetry. Symmetry serves to
reduce the number of non-vanishing terms that must
be processed, as well as to relate quantities that are
equal and thus need be calculated only once, reducing
redundant work. The first stage of most calculations is
the computation of integrals involving various operators
over some form of one-electron basis. The molecular
Hamiltonian comprises one- and two-electron operators,
and for a one-electron basis this leads to one- and two-
electron integrals. The greatest economy from symmetry
in later stages of the calculation is obtained if the one-
electron basis is symmetry-adapted, that is, the elements
of this basis transform as basis functions for irreducible
representations of the molecular point group. Integrals
over such symmetry-adapted basis functions will be
referred to as symmetry-adapted integrals in this work.
Typically, the basis functions used in molecular
calculations are centered on individual atoms, and thus
symmetry-adapted basis functions must be formed as
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appropriate linear combinations of the original basis.
We shall refer to the original basis functions as atomic
orbitals (AOs) and the symmetry-adapted combinations
as symmetry orbitals (SOs) in what follows.

Probably the most elegant and powerful technique for
obtaining symmetry-adapted integrals is the method of
double coset decompositions introduced by Davidson
[1]. This approach unifies the enumeration of symmetry-
distinct integrals — the list of distinct integrals over AOs —
with the construction of symmetry-adapted integrals
by combining these distinct integrals with appropriate
weights. In his original paper Davidson considered
one- and two-electron integrals over totally symmetric
operators O, that is operators for which

G'0G=0vYGe9 , (1)

where ¥ is the molecular point group, of order g.
Integrals over operators that are not totally symmetric
have been discussed by one of the present authors [2], as
have integrals over basis functions that are differentiated
with respect to certain parameters, such as the coordi-
nates of their centres [3].

Recently, there has been a resurgence of interest in
the use of basis functions that depend on the coordinates
of more than one electron. Such methods go back to
Hylleraas [4], with the inclusion of the interelectronic
coordinate for helium. Current approaches include the
use of Gaussian-type geminals (see, e.g., [5]), of the form

(i7j7k7 l'm?nvna 07 K,Z,E)
i j I .m 2 2 )
= X128V exp(—nriy — Oryg — K1)
- 2 I m
= X\ V14710 eXP (—nri0)%55Y55755
x exp(—0ryg) exp(—x17,) (2)

and of wave functions that include factors of linear ry,,
the interelectronic coordinate (see, €.g., [6]). We may note
that all of these approaches can be viewed as using two-
electron basis functions of the general product form

Go(Fra) by (F2p)w(r12) - (3)
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In current applications of these functions, the two-

electron part w — the ‘“‘correlation factor” — is totally
symmetric:
Gw(rp) =w(rn)YGeg . (4)

In general, we shall assume this to be the case, although
we will discuss briefly the situation where it is not.

Even for a Hamiltonian comprising only one- and
two-electron operators, a much richer set of integrals
arises once two-electron basis functions are admitted.
For the simplest treatment of electron correlation, sec-
ond-order perturbation theory, at least three-electron
integrals are needed, and as the correlation treatment
becomes more elaborate four-electron integrals and even
five-electron and higher integrals can appear. The scaling
of the computational effort for these many-electron
integrals is very great, and indeed it is difficult to see that
a method that requires, say, four-electron integrals can
find wide applicability. Nevertheless, for any desired
order of integrals there are the same opportunities to use
molecular symmetry to reduce the work needed to cal-
culate the integrals and the work performed using them
in later stages of the calculation. As part of our on-going
efforts [7] to use two-electron basis functions in practical
calculations we have therefore generalized the double
coset decomposition (DCD) procedure to integrals of
any order. In this paper we first review DCDs and their
application to one- and two-electron integrals, in part to
establish notation. We then develop a general formula,
proved by induction. Finally, we use this general
formula to discuss computational considerations and
the example of three-electron integrals, which we have
recently programmed in the Dalton package [8] for
computational quantum chemistry.

Symmetry-adapted integrals over one-electron
basis functions

At the outset of this work we found ourselves in a
notational quandary. There is a rather well-established
notation for all of the various quantities that comprise
the formulas for symmetry-adapted integrals, and all of
the previous work has consistently used these conven-
tions. Unfortunately, this notation makes heavy use of
different alphabetical sequences for different quantities,
and there are simply not enough letters in the (Roman)
alphabet to do the job for higher-order integrals. After
many attempts to use different fonts for different
quantities and endless difficulties with multiple levels of
subscripts, we have reluctantly concluded that a change
in notation is unavoidable. In this section, therefore, we
will briefly review one- and two-electron integrals over
one-electron basis functions in the usual notation, and
then make a transition to the more general notation we
shall use later, in order to make clear the connections to
earlier work.

In most computational implementations of DCDs,
the molecular symmetry treated has been restricted to
D, and its subgroups. These are Abelian groups in
which each element is its own inverse. Further, any
function on a given center is taken into a single “image”

function on another center under any group operation,
rather than a linear combination of functions. Let an
AO on center 4 be denoted f, 4, where all other prop-
erties of the AO (angular type, s, p,, etc., Gaussian
or Slater exponent or exponents and contraction coeffi-
cients) are subsumed into the index a. Then

GfaA :pa(G)faG(A) ) (5)

where G(A) is the transformed center obtained by
applying G to center A, and p,(G) is a parity factor
(for D, and its subgroups) that depends on the angular
behaviour of f,4. An SO F?, for irreducible representa-
tion (irrep) o can be constructed from this AO and its
images by projection:

Fly=g"Y 7(G)Gfus ; (6)
G

where g is the order of the group and y* the group
character for the desired irrep.

We note that there is some subgroup # C % for
which U(4)= A. % is known as the stabilizer of A. If the
order of % is denoted u. Under the stabilizer AOs on
A transform as

UfaA :Pa(U)faA . (7)

In fact, each f,, transforms as a basis function for some
irrep v of the subgroup #, giving

> L (U)pa(U) =u . 8)
U

Consider now another AQO, f;,, with stabilizer ¥". From
two subgroups % and 7~ we can form double cosets

UGV VGEG . (9)

Two double cosets are either distinct (no elements in
common) or identical. Unlike cosets, GU or UG, a given
element of ¥ may occur multiple times in a given double
coset. For D,, and its subgroups this degeneracy is
independent of G in Eq. (9) and is given by the
expression Ag = |# N ¥"|. A group can thus be decom-
posed into distinct double cosets in this way: a double
coset decomposition. By selecting a set of operators R
chosen one from each distinct double coset, a sum over
group elements can be replaced with a sum over elements
of %, v, and R, with a weighting factor of Ag. The
elements of R are termed double coset representatives.
For example

Fly=g 0" Y > > 7(URV)URVfu .
U R V

Using DCDs, it is possible to write a symmetry-adapted
integral as a sum of symmetry-distinct integrals with
appropriate weight factors. The most important cases
are totally symmetric one- and two-electron operators,
whose integrals over SOs take the form

(Fagf4|O|FéxB>
= uvg 25 L Z 2 (R)po(R) (fua |0 fsrs))
R

(10)

(11)

and
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= g_3uvwxlzﬁ~,5/l~?l Z Z Z PR (T2 (TS)
R s

T
X po(R)pe(T)pa(TS) (fusform) for o) furspy) - (12)

Here the selection rule factor 1,4, .
Lp. =g Y (GG ; (13)
G

which vanishes unless the direct product «a® f® ...
contains the totally symmetric irrep, and the DCR R, S,
and T are obtained from DCDs involving respectively #
and v", # and %, and N and W NE. U, V",
W, and 2 are the respective stabilizers of centers 4, B,
C,and D. % N " is the stabilizer of the pair of centers A
and B, and thus of the charge distribution f, {5, and
similarly # N % for f.cf,;p. Finally, we may note that if
the charge distribution f.-f;p is the same as f, {5 the
DCD defining T can be expanded; see [1, 2].

We will later make use of a particular property of the
selection rule at Eq. (13) for D, and its subgroups. We
note first that since all irreps are one-dimensional, it
follows that any direct product of irreps is one-dimen-
sional. Further, for the totally symmetric irrep all
characters are unity, of course, whereas for all other
irreps half of the g characters are +1 and half are —1.
The result is that when Eq. (13) is satisfied we have
the stronger condition

2(@)PG)...=1VGe9 . (14)

We may term this stronger condition a superselection
rule.

The formulas of Egs. (11) and (12) are relatively
straightforward. Each comprises a set of summations
over group operators that generate distinct AO integrals,
and a product of selection rule and parity factor terms
that give the weight with which each distinct integral
contributes to the nonvanishing symmetry-adapted in-
tegrals. Computational implementation is also relatively
straightforward: Alml6f’'s MOLECULE program [9]
computed symmetry-adapted integrals in this way al-
most 30 years ago, although the author arrived at the
necessary formulas via a quite different route. Several
current integral programs use an implementation very
close to that described here, including the program
SEWARD [10] as well as the integral routines in the
package Dalton [8].

As noted above the notation used in this brief review is
exactly that introduced by Davidson [1], and in retro-
spect it can be seen to be profligate in its use of alpha-
betical symbols even though it is economical of subscripts
and superscripts. In order to generalize these formulas to
higher-order integrals we will have to revise the notation.
Going forward, then, we will denote different AOs by
fla;,A;], with different choice of subscripts i, and similarly
the possible SOs derived from f[a;,A4;] and its images as
Ha;,A;,], where irreps are now labeled as o,. Group
operators in ¢ will be denoted G; ; the stabilizer of center
A; becomes %' with elements U’ and order u;. Here i, j,
and p are integers, counting from one up. The selection
rule 1,5 becomes I(aa,...); the parity factors become

is given by
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Pu(Gy). Each set of DCR will be denoted T, with k again
an integer counting index. It is essential to understand
that the superscript notation denotes a specific set of
DCR or a subgroup of ¢, and not an element of a set.
That is, the elements of the set T' are labeled T', and
similarly for an element U’ € %'. The factor A assocmted
with each set of DCR is written as Api.

In this notation the one- and two-electron symmetry-
adapted integrals introduced above would become

(F[al,Ah a1}|O|F[a2,A2, 062])
Zlm )P, (T
(Az)]) (15)

= uluzg ;{Tl I O(].’Xz

X (fla1,41]|O|f [a2, T
and
(Fla1,A41,01]F[az, A2, 00]|F|as, A3, 03)F [as, Aa, 24])
= g*3u1u2u3u41(o¢1a2a3a4)}71
Xzzzxw a; T? yo<4(T3T2)
" 12 73
X Py, (T")P,y (T?)P,, (T3 T?)

x (flar,4i]f a2, T' (A2)]|f a3, T* (43)]f [as, T°T*(44)]) -

(16)
Comparison with Egs. (11) and (12) should make all of
the notational changes clear. With this notation we can
now establish a general formula for symmetry-adapted
integrals.

General formula for symmetry-adapted integrals

We begin by reminding the reader that we are using two-
electron basis functions of the general form of Eq. (3).
We then redefine the operator in a general many-electron
integral so that the two-electron factors are absorbed into
the operator. For example, if we have a two-electron
operator ()1; and a “‘cyclic” three-electron integral

J[] 2000wt gyr2) 012212
X wy(r2,73) P, (r1)dr dradrs (17)
we define a new operator

0855 = wa(r1,73) Orawp(r2, r3) (18)

and rewrite the integral as

ﬂ%mmwmw%%w
X ¢,(r3)p;(r1)dr; drydrs .

Assuming for the moment that ¢y, is a totally symmetric
operator, and that the correlation factors are also totdlly
symmetric, it follows that the new operator (%, is
also totally symmetric. (We will relax these restrictions
subsequently.) This is of course also true for any
operator we construct in this way, irrespective of how
many correlation factors appear. We can therefore write

(19)
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a general symmetry-adapted integral over such a many-
electron operator (say n -electron) as

/ / [ar, A1, 01](r1)F|as, A3, 03] ()

Flay,1,42n-1,%01](72)

X @13...,,17[612#12» % (r1)Flas, A4, 0] (r2)

. .F[azn,Azn, oczn](rn)drl e d}”n y (20)
where we have specifically indicated the electron coor-
dinates associated with each symmetry orbital, or in a
more convenient charge distribution notation as
(Flay, A1, 01]F[ax, A2, 0] |Faz, A3, 03] F a4, A4, 04]|

NFlaom—1, A1, %on—1]F @24, A2n, %24])

(1)

by analogy with the LHS of Eq. (16). Here each pair of
symmetry orbitals between vertical bars involves a single
electron coordinate: a charge distribution.

We now assert that the integral of Eq. (21) can be
written in terms of distinct integrals over AO charge
distributions as

(Flai,Ay,01]F a2, A>,00]|F a3, A3, 03]F [as, Aa, 04]|

| Flaon—1,A—1,00n-1]F[asy, A2y, 020])

= gi(znil)ul uznl(oq O(zn)ir;zlnfl
% Xocz 1; T2n 1))6014(T2n71 TZ)

. .X“z"(TZ"_1T2”_2 . Tn)

Xpaz (Tl >pa3(T2n71 )pa4(T2n71 T2) - -pazn(T2n71T2n72 . Tn)
x (flar,41]f [a2, T'(42)]| f a3, T*" " (43)]

x faa, " 'T*(A)]|... fazu1, T T (A1)
x flaz, T 1. T (A2)]) - (22)

In this expression we have adopted the following
numbering convention for the DCRs. DCR T! generates
distinct charge distributions from the orbital pair
fla,A1] flar,A5), DCR T? generates distinct charge
distributions from flaz,A3] flas,A4], and so on through
T" for f[azn laA2n 1] f[azn,Azn] The DCR Tn+ arises
from a DCD 1nvolv1ng the respective stabilizers of
Marn-3,80,-3]  flaz,2, T (Azn )l and  fldz,-1,42,-1]
A2, T"(A5,)], then DCR T"+ arises from the stabilizers
Off[A2n SsAZn 5] .f[A2n 4a - (AZn 4)] and the quadruplel

flazn—3, Aon-3)f [arn—2, T" " (A24-2)]
x f [azn—1, T (A2n-1)] f [a2a, T T (420)]

and so on recursively back to 7%

We shall prove Eq. (22) by induction, by constructing
from this n-electron integral and an additional pair of
symmetry orbitals an n+ 1 -electron symmetry-adapted
integral.

For further manipulation we make some indexing
changes in the integral, numbering orbitals from 3 to
2n + 2 instead of 1 to 2n, with a corresponding shift in
DCR numbering from 2 to 2n instead of 1 to 2n—1. We
also expand the selection rule (after resequencing) as

(23)

1(03...0n12) = ¢ 127‘“ (G (24)

and multiply the AO integral by G; for each term in this
sum. The integral is a scalar and unaffected by this
operation, of course. We thus rewrite Eq. (22) as

(Flas, A3, 03] F[as, As, ]| Fas, As, as]F[as, As, %) |
|F[a2n+l s Aopi1s a2n+1]F[a2n+2aA2n+27 062n+2D
_ q u2n+2z/{ 0<2n+2(G )}

% Z"'ZXM T2 X(X5 T2n)xoc(,(T2nT3)

T2 T2n
. Xocz,,+2 (T2nT2n—1 . T}H—])
X ptl4(T2)pa5(Tzn)pas<T2nT3)
p (T2n T2n—1 TrH—l )
a2n+2
( Gif (a3, 43)Gif [as, T*(4a)] | Gif [as, T*"(45)]
x Gif [ag, T*"T*(46)] |
Gif [a2n+l 3 T2n cee Tn+2 <A2n+l )}
X G,f [az,,+2, T2n ce Tn+1 (A2n+2>}) .

We now wish to develop an n+1 -electron integral by
extending the existing integral with an additional charge
distribution, which in SOs we take to be Fla;,A4;,04]
F[az,Az,Oﬁz]. This gives

T2r1

(25)

(Flay,41,01]F [az,A2,00]|F[a3,43,03]F [as,A4,04] |
- |Flazn1,42 41, O‘2n+l]F[a2n+27A2n+2aa2n+2])
=g ;. u2n+2Z/C az"“(Gi)/l;zln
><z---zxwzw<r2">yf6<r2"r3>
TZ TZn
LTt
2 2n 2n 3
Xpa4(T )pas(T )paa(T T)
e Pany (TP TP T
X (Flay,A1,00]F[a2,4>,00] | Gif [a3,43]
X Gif [as, T*(44)]| Gif [as, T*"(45)] Gif [a, T*"T* (46)] |

- Gif (a1, T .. T" (A1)
X Gif [azni2, T ... T (A2042)]) - (26)
We expand the charge distribution Fla;,4,04]

Flay,A,05] using a DCD as
Flay, A1, ]F[a, 42, 0]
=g u1u2}T1 ZZ/{W
J
X ij[alaAl] jf[aZa ( 2)]
and substitute this into the RHS of Eq. (26) to give

(G2 (T")pas (T")

(27)

(Flai, A1, 01]F[az, A2, 0] |Fas, A3, 03] F [as, A, 0] |

N F a1, Aonits 0on1 [F g2, Aonia, ton12])



(2n+2

=9 }’ (Gi)

- Udpp2 Z z /(al

(G i A

.>< ;Z Zyaz

a4 T2 /15 (T2n )Xoc(, (T2n TS)

- 5
) .X“2n+z(T2nT2n—l o Tn+1)
X Pas (T Py (T?)pas (T™)pas (T T)
CPay o (T TP T
< (Gf lar, 4|Gf [ax, T (42)] | G las, 43]
x Gif [as, T*(44)]|
x Gif [as, T*(45)] Gif [as, T*"T*(44)] |
Gif [aznst, T ... T2 (A2,41)]
X Gif [aznsa, T ... T"  (A2012)]) - (28)

We replace G; with G;G; using the Rearrangement
Theorem and then rotate the AO integral by G;, giving

(Flay, A1, 00|F[az, A2, ] |Flas, A3, 03] F [as, A4, 04|

NFlams1, Aong1, 0on1[F (g2, Aopia, 0n42])

= g7(2n+2)u1 L Udp2 Z Z Xm (G])
i
(G (G ,(Wz( );LTE Ao
X ZZ Zyotz 0’5(T2n) as(TZnTS)
7! T2 T2n

e (TT20 T
X Py (T)Pay (T7)Pas (T )pay (TH'T)
_ .paszrz(TZnTanl T
X (flar, Ailf [a2, T (42)]|Gif [as, 43)Gif [aa,
x Gif las, T*"(45)| Gif [as, T*"T?(45)]|
Gif [ansr, T ... T (Azy1)]
X Gif [asia, T ... T"  (A2ns2)]) (29)

We now use a DCD derived from the stabilizer (denoted
U") of flay,A] flas,A>] and the stabilizer (denoted %) of
the set of centers As...A».>, with DCR T?"*1. (We
note that this notation for the stabilizers can be arbitrary
since they do not appear in any final expressions.) From
the properties of the stabilizers we have

U flag, 4] = pa, (U flar, 4] ¥V k>3 and UT € %" .
(30)

T%(44)]]

We replace the sum over G; using this DCD, and note
that we can collapse the sum over G; into the usual
selection rule to give

(Flay, Ay, 0q]Fay, Ay, 00]|Flas, A3, 03] F a4, A4, 04]|

NFlaons1, Aoty 0ons1F [@2ns2, Aong2, 0on42])

=g @ IR RV (I 0€2n+2>/1;1 )”TZ";‘T’"“
DI MR BACORTELCD
Ul oyl el ol T2 T2
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% ya;(UII) A szz(UII) a;(T2n+1) .
X (T (T2) 05 (T (T T)
B onz,ﬂz(TZnTZn 1 o Tn+1)

X Pay (T1)Pas (T?)Pas (T )pag (T T?)
Py, (T TP T

x (flar, A1) f a2, T' (AU T* 1 U flas, 43)

% UIT2n+1 U”f[a4, TZ(A4)}|U’T2”+1 U”f[a5, T2n(A5)]

% U1T2n+1 Ullf[aﬁ, T2nT3 (AG)“

CylTn! UHf[az,,H, T2 T2"+2(A2n+1)]

x U'T* UM flazy s, T ... T"  (42042)]) (31)

If we carry out the transformations by 72" and U" we
obtain

(Flai,Ar,0]Fax, A>, 0] |Flaz, A3, a3]F [as, A4, o4]|

NFlaons1, Ao, 0ons1|F[a2ns2, Aonir, 0on42])
—(2n+1) -1

7012,,+2 (T2n+1 )

=y up... u2n+21(ocl R oc2n+2)/1}11 )»%21,1},1"2,#1
1553355 S SRIGHESRTD
ul yll 1ol T2 T2n
X 70(3 (U”) . X“2"+2(U11) o3 (T2n+1) . XD(Z/,+2(T2n+1)

X (T 7 (T2) 7 (T2 7 (T T°)

L (Tl

X Pa (T )Pay (T*)Pas (T )pa (TP T7)

Py (TPT1 T

X Pas(T"1) o P (T )y (UT) - s, (UT)
X (flar, A1)f [az, T'(42))|U' f [a3, T*"*' (43)]

5 Ullas, TV T2 (40))|U” flas, T T (45)]

x Ul flag, T T T3 (4g)]
U flagey, T T

X U' flagna, T T ..

"2 (A )]
T (d3y10)] (32)

and by rotating the AO integral by U’ we obtain
(Flay, Ay, 00]F [ax, Ay, 0] |Faz, A3, 03]F (a4, A4, 04]|
NFlazns1,Aons1, 0on1|F [@2ng2, A2z, %on42))

_ g—(2n+1) -1

~—l -1
up. u2n+2[(al a2n+2) T! )TZn /1T2n+1

XD 22 2D U (U
y! yll 7w+l Tl T2 T2n
(UH) . O(2n+7 (UH) o3 (T2n+1 ) . Xatznu (T2n+1 )

XX (T )XOC4(T2)XOL5(T2H) 9(5(T211T3)
LTt
Xpaz(Tl)pa4(T2)pas(Tzn)paa(TznT3)
P (TZnT2n—l T11+l)p (TZn-H)
- DParpir a3
X Pay,ia (Tan )Pas (UH) o Payis (UH)Pal (U])Paz (UI)
x (flar, ilf a2, T (42)] | flas, T (45))]
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X flas, "' T*(44)] | fla
x flae, T*" ' T2" T (46)]|

5, T2n+1 TZn(AS)]

- Slazarr, T"T T2 (A )N Jaznga, T T

LT (Aasn))) (33)
Now, from the superselection rule at Eq. (14)
7(G)-2(G) =1V G ed (34)

or the integral would anyway vanish under Eq. (13).
Hence

LG (Gi) = = (Gy) - 2 (Gy) - (35)
In turn, then,
Z:/’<3 (u’)- 962"+7(l/1)19a11 (U[)pa,(Ul)

(36)

_ Z 70(1 UI
(cf. Eq. 8 and [1, 2]), and also

S UMY (U (UM

U])pal (Ul)paz(U ) = Ari s

'pu2n+2(U11) = ;“TZ” ,

Ull
(37)
yielding finally
(Flay, A1, 0u]F|ax, A2, 0] |Faz, A3, 03] F a4, A, 04]|
- |Flazmsr, Aznsts ng1F (2012, Aoni, %ony2))
= g7(2n+1>u1 v u2n+2](<x1 ce O£2n+2))v;21,1+1
% Xa2 a; T2n+l )Xa4 (T2n+1 T2)
B 7a2”+2(T2n+1 T2n o Tn+1)
X Pas (T )Pay (T ) pa, (T T2)
) ~Pa2,,+2(T2n+l T2n o Tn+1)
x (flar, 41)f[az, T' (42)]|
x flas, T (43)]faa, T T (4a)]
. .f[a2n+1 s T2n+l e T’H_z(Az,H_l)]
X f[a2n+2, T2n+1 oo Tn+1(A2n+2)]) . (38)

This is exactly the same as the formula of Eq. (22) except
that the index ranges are larger. Hence coupling a new
charge distribution into the n -electron integral formula
has produced the same formula as extending the indices
in the original formula. This, together with the
observation that we obtain the correct result for the
two-electron case from the one-electron case, is sufficient
to establish Eq. (22) as correct by induction.

The above derivation assumed a totally symmetric
many-electron operator in the integral, which allowed us
to ignore the operator itself in our derivation. If
the many-electron operator is of symmetry species o,
say, not necessarily the totally symmetric irrep, then
provided the operator does not depend on any center
coordinates the only change to the symmetry-adapted

integral formula is that the selection rule / becomes
(oot . ..00,), that is, includes an extra factor for oy. This
allows us to generalize the two-electron function w(1,2)
in Eq. (3) to include angular terms like x;,. If w(1,2)
depends on any center coordinates, then in order to
obtain an expression that involves no redundant terms
in the summation it is necessary to introduce another
double coset decomposition, based on the stabilizer of
the center(s) appearing in the operator and the stabilizer
of all the charge distributions [1, 2].

Discussion

It is edifying to look at a specific case to illustrate the
formulas. The most obvious new case would be a three-
electron integral. We see from above that a cyclic three-
electron integral over the electron repulsion operator
would be given by

///F[al’Al’al](rl)F[a%AL063](”2)F[a5,A5,o<5](r3)

x w(r1,r3)rp W (ra,13)Flag, Az, 00)(r1)

X Flag, A4, 04](r2)F|ag, Ae, %) (r3)dr dro drs
= (Flay, Ay, 01]F|az, A2, 0] |Flas, 43, 03]

X Flayg,Aq,04]|Flas,As,os|Flag, Ag, %))

_5 b—1
= g wupusugusucl (o ocgoc3oc4a5a6)A

XZZZZZXW az TS a4(T5T2)

Tt T 13 T4 T3
% Xa5(T5T4)Xa6(T5T4T3)
X Par (T)Pas (T°) Py (T° T2 pas (T T )pas (T T*T7)
x (flar, A1l [a2, T (A2)] | [a3, T°(43)]
x fas, T°T*(44)]|f [as, T’ T*(45)] f[a6, T’ T*T%(46)]) -
(39)

This expression is long but not complicated. It comprises
a selection rule, some numerical factors which weight
each integral according to the irreps it contributes to,
with what phase, and how many equivalent integrals are
accounted for. The various DCR ensure first that only
distinct charge distributions appear, and then that only
distinct combinations of those charge dlstrlbutlons
appear The five sets of DCR arise as follows. T', T2,
and T? generate distinct charge distributions from the
original pairs flai,41] flaz,As), flas,43] flas,A4), and
flas,As] flas,Ag], respectively. Then T generates distinct
quadruplets from f[as,As] flas,T(A44)] and f[as,As]
flae. T*(4g)], and finally T° generates distinct hextuplets
from fla;,41] fla:,T'(42)] and flas.As] flasTH(As)]
flas, T (45)] flae.T*T*(4g)]. There is no structural
difference between the three-electron formula and the
two-electron formula. For example, Dalton [8] includes
a matrix multiplication formulation of the two-electron
integral formula, developed by Helgaker (unpublished),
and we have had little trouble implementing the
appropriate loop structure and formulas to extend this
to the case of three-electron integrals over Gaussian-type
geminal basis functions.



In applications such as MP2 calculations with cor-
relation factors of Gaussian or linear r;, type, three- and
perhaps four-electron integrals appear in partial trace
expressions where they are contracted with the SCF
density matrix. It is possible to simplify symmetry pro-
cessing in such trace calculations somewhat by defining
new density matrices that include some of the phase and
weighting factors [2].

Conclusions

A general formula has been developed for computing
integrals over symmetry-adapted basis functions to any
order, extending existing work for one- and two-electron
integrals. The formula expresses integrals over symme-
try-adapted two-electron basis functions of the general
form of Eq. (3) in terms of symmetry-distinct integrals.
The formula has been proved by induction and holds for
arbitrarily many electrons. This approach has been
programmed for three-electron integrals in the Dalton
program as part of our efforts to explore the use of
GTGs in molecular calculations.
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